Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices.

نویسندگان

  • Emmett E Perl
  • William E McMahon
  • John E Bowers
  • Daniel J Friedman
چکیده

The successful development of multijunction photovoltaic devices with four or more subcells has placed additional importance on the design of high-quality broadband antireflection coatings. Antireflective nanostructures have shown promise for reducing reflection loss compared to the best thin-film interference coatings. However, material constraints make nanostructures difficult to integrate without introducing additional absorption or electrical losses. In this work, we compare the performance of various nanostructure configurations with that of an optimized multilayer antireflection coating. Transmission into a four-junction solar cell is computed for each antireflective design, and the corresponding cell efficiency is calculated. We find that the best performance is achieved with a hybrid configuration that combines nanostructures with a multilayer thin-film optical coating. This approach increases transmitted power into the top subcell by 1.3% over an optimal thin-film coating, corresponding to an increase of approximately 0.8% in the modeled cell efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic and silicon spherical nanoparticle antireflective coatings

Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectr...

متن کامل

Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO₂), indium tin oxide (ITO), and a hybrid layer of SiO₂/ITO applied using Radio frequency (RF) sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and...

متن کامل

Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review

Reduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and na...

متن کامل

Biomimetic ‘moth-eye’ anti-reflection design on the graphene sheet

In this paper we propose the biomimetic moth-eye anti-reflection structures on graphene sheet based on transformation optics. The reflections of such structures are investigated by analytical Effective Medium Theory combined with Transfer Matrix Method (EMT/TMM) and numerical Finite Element Method (FEM). Both analytical and numerical methods have shown that the average reflection losses of 1% c...

متن کامل

Resonant Nanophotonic Spectrum Splitting for Ultrathin Multijunction Solar Cells

We present an approach to spectrum splitting for photovoltaics that utilizes the resonant optical properties of nanostructures for simultaneous voltage enhancement and spatial separation of different colors of light. Using metal-insulator-metal resonators commonly used in broadband metamaterial absorbers we show theoretically that output voltages can be enhanced significantly compared to single...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 Suppl 5  شماره 

صفحات  -

تاریخ انتشار 2014